Monatshefte für Chemie 107, 921-927 (1976) © by Springer-Verlag 1976

Die Kristallstruktur der Verbindung Li₂ZnGeO₄

Von

Edmund Plattner, Horst Völlenke und Alfred Wittmann⁺

Institut für Mineralogie, Kristallographie und Strukturchemie, Technische Universität Wien, Österreich

Mit 1 Abbildung

(Eingegangen am 26. Januar 1976)

The Crystal Structure of the Compound Li₂ZnGeO₄

The crystal structure of dilithiumzine orthogermanate, Li₂ZnGeO₄, has been determined and refined by *Fourier* syntheses and least-squares, using three dimensional singlecrystal data. A final *R*-value of 5.7% was obtained. The monoclinic unit cell (Pn — C_s²) with the dimensions a = 6.40, b = 5.45, c = 5.04 Å and $\beta = 90.2^{\circ}$ contains two formula units Li₂ZnGeO₄. The crystal structure is built up by [GeO₄] tetrahedra, which are linked together by [LiO₄] and [ZnO₄] tetrahedra. The average interatomic distances are found to be: Ge—O = 1.77, Li—O = 2.01 and Zn—O = 1.93 Å.

Im Rahmen von kristallchemischen Untersuchungen des pseudobinären Schnittes Li_4GeO_4 — Zn_2GeO_4 wurden neben den schon bekannten Randphasen $Li_4GeO_4^1$ und $Zn_2GeO_4^2$ die Verbindungen $Li_3Zn_{0,5}GeO_4^{3,4}$ und $Li_2ZnGeO_4^{3,4}$ aufgefunden. Auf Grund der Ähnlichkeit der Abmessungen der Elementarzellen war für diese Verbindungen eine ausgeprägte Strukturverwandtschaft mit der Hoch-⁵ und Tieftemperaturmodifikation⁶ des Lithium-orthophosphats Li_3PO_4 zu erwarten. Eine analoge Beziehung dürfte für die Silikatverbindungen $Li_3Zn_{0,5}SiO_4^7$ und $Li_2ZnSiO_4^7$ bestehen.

Experimenteller Teil

Als Ausgangssubstanzen zur Herstellung der Verbindung Li₂ZnGeO₄ dienten Li₂CO₃ (reinst, Merck), ZnO (reinst, Merck) und GeO₂ (99,999%, Quarzform, Loba-Chemie), die in äquimolarem Verhältnis vermengt und in einem Platintiegel bei 1300 °C zur Reaktion gebracht wurden. Das erhaltene Sinterprodukt wurde anschließend 4 Stdn. bei 800 °C getempert.

hkl	$\sin^2 \vartheta \cdot 10^3$	$\sin^2 \vartheta \cdot 10^3$	Int.,	Int.,
	Der,		uer.	
010	20,0	20,0	0,1	SS
110	34,5	34,5	1000	sst
<u>1</u> 01	37,7)	07.7	649,8)	
101	38,0}	31,7	561,7	SSU
011	$43,3^{'}$	43,1	$6,4^{'}$	s
<u>1</u> 11	57,7)		155,5)	
200	57,9	57,7	1,3	\mathbf{mst}
111	57,9		180,3	
210	77,9	77,8	530,0	\mathbf{st}
020	79,9	79,7	276,1	\mathbf{mst}
002	93,4	93,3	512,0	\mathbf{st}
120	94,4	94,2	188,0	m
$\overline{2}11$	101,0)	101.0	278,1)	
211	101.5	101,2	304.2	\mathbf{st}
021	$103.2^{'}$	103,0	$274.6^{'}$	\mathbf{mst}
121	117.6)	, , , ,	62,1)	
121	117.9	117,6	48.6	\mathbf{m}
$\overline{1}12$	127.6)		124.8	
112	128.1	127,7	106.5	\mathbf{mst}
310	150.3	150.3	105.3	m
301	153.3	153.2	50.9	m
301	154.1	154.1	50.9	m
212	170.8)	202,2	96.0)	
212	171.8	170,9	92.6	m
311	173.3)		36.6)	
022	173 3	173.3	86.8	m
311	174 0	110,0	38.1	
122	187.5	187.1	66.5	m
122	188 1	188.0	51.9	m
130	194.3	194.3	9.6	88
031	203 1	202.9	6.0	88
320	210.3	210.4	57.3	m
120 191	210,0	210,1	65.2)	
191	217,5	217,5	85.3	\mathbf{m}
101 103	221, 1	224 0	42.2	ms
103	225,1	225.0	47.8	ms
400	231.8	231.8	161.1	mst
<u>२</u> 00 २२१	233 2)	201,0	10.1)	51150
321	234 0	233,6	18.0	ъ
230	237.7	237.5	291.4	mst

Tabelle 1. Auswertung einer Pulveraufnahme von Li₂ZnGeO₄ bis $\sin^2 \vartheta = 0.24$ (CuK α -Strahlung)

Zur Bestimmung der Kristallstruktur wurde unter dem Polarisationsmikroskop ein optisch einwandfreier Einkristall mit den Abmessungen $0,03 \text{ mm} \times 0,04 \text{ mm} \times 0,04 \text{ mm}$ ausgewählt. Aus Pulveraufnahmen nach dem *Guinier*-Verfahren und aus Einkristall-Aufnahmen mit einer Präzessions-Kamera ergaben sich folgende Gitterparameter für die monokline Elementarzelle:

$$a = 6,40, b = 5,45, c = 5,04 \text{ Å und } \beta = 90,2^{\circ}.$$

Die pyknometrisch bestimmte Dichte von $4,04 \text{ g} \cdot \text{cm}^{-3}$ führte auf 2 Formeleinheiten Li₂ZnGeO₄ in der Elementarzelle.

Integrierte Weissenberg-Aufnahmen der nullten bis 5. Schichtebene (CuK α -Strahlung, [010]-Achse) lieferten 234 unabhängige Reflexe in der asymmetrischen Einheit, die mit einem Mikrodensitometer photometriert wurden. Die Intensitätswerte wurden nach einer für den verwendeten Röntgenfilm ermittelten Schwärzungskurve umgerechnet und mit Lorentzund Polarisationsfaktoren korrigiert. Die beobachteten Auslöschungen, hol nur mit h + l = 2n, ho0 nur mit l = 2n vorhanden, entsprechen der Raumgruppe Pn. Tab. 1 enthält die Auswertung eines Debyeogramms der Verbindung bis $\sin^2 \vartheta = 0,24$.

Bestimmung und Verfeinerung der Kristallstruktur

Auf Grund der weitgehenden Übereinstimmung der Beugungsdiagramme, der gleichen Raumgruppe und der gleichen Zahl der Formeleinheiten in der Elementarzelle wurden die Atomparameter des Minerals Liberit, Li₂BeSiO₄⁸, als Ausgangswerte für die Verfeinerung der Kristallstruktur der Verbindung Li₂ZnGeO₄ herangezogen.

Atom	Punktlage	x	y	z	В
Ge	2 (a)	0	0.176(3)	0	0,8 (3)
Zn	2 (a)	0,253(1)	0,340(3)	0,496(1)	0,7(3)
Li (1)	2 (a)	0,5	0,133	0	0,6
Li(2)	2 (a)	0,75	0,317	0,5	0,9
0 (1)	2 (a)	0,496(7)	0,134(9)	0,421 (9)	1,4(9)
O (2)	2(a)	0,268(4)	0,672(6)	0,382(6)	0,2(5)
O (3)	2 (a)	-0,003 (7)	0,187(1)	0,348(9)	2,5(9)
O (4)	2 (a)	0,235 (4)	0,315(6)	0,880 (6)	0,1(4)

Die Verfeinerung wurde mit Hilfe von dreidimensionalen Fourier-Synthesen durchgeführt. Die Methode der kleinsten Quadrate konnte unter Berücksichtigung isotroper Temperaturfaktoren für jede Atomlage und getrennter Skalenfaktoren für die einzelnen Schichtebenen auf alle Atome angewandt werden mit Ausnahme der Li-Atome, für die keine eindeutige Konvergenz erhalten wurde. Der Grund für die schlechte Konvergenz der Li-Parameter dürfte in der deutlich ausgeprägten orthorhombischen Pseudosymmetrie, die sehr hohe Korrelationskoeffizienten* zwischen den pseudorhombischen Parametern zur Folge hat und damit die Gesamt-

^{*} Der Mittelwert der Korrelationskoeffizienten zwischen entsprechenden Ge- bzw. Zn-Parametern beträgt 0,78 bzw. 0,96.

für Li ₂ ZnGeO ₄
Strukturamplituden
berechnete
pun
Beobachtete
ŝ
Tabelle

		•	~			•	_	_		-	_	-		<u> </u>	_	_	~	-	~		_	_	_	•	-		_		-	-	-	<u> </u>		•	-	-			
	Ē	ē	-		š	Ň	-		× ×	m T	č Z	2	1 1	ň e	m M	ń.	1	2		4	Ñ E	2	2	а 0	8	7	-	ہ ہ	-		5	8 6	5	3	8	-	8		
	Ţ	¥		23	2	Ň	Ä	1	2	ĕ	2	4	9	4	ñ	ñ	4	ä		ň	'n	N	ň	ň	ñ	7	4	-	7	ñ	m	H	-	-		-			
2 X I			543	144	-1 4 4	344	* * 8-	* * *	-150	-250	-350	550	151	-151	251	-251	351	-351	551	152	-152	252	-252	352	-3 5 2	552	153	-552	-153	253	-253	154	-154	254	-254	-254	-254		
•	\$	37	36	38	23	23	37	37	28	20	18	22	\$	35	35	27	27	27	3	32	53	17	32	24	22	17	18	36	36	11	32	32	25	27	22	24	16	1	12
⊾°	Ę	ę	66	37	õ	54	33	30	27	26	18	20	37	37	34	õ	28	24	\$	31	53	18	36	52	22	13	57	38	37	18	32	32	26	53	2	23	17	12	14
h k 1	133	-133	333	-333	533	-533	234	-2 3 4	135	-135	335	-335	-140	340	-340		-440	540	0 411	0 4 2	043		045	141	-141	341	-3 4 2	1 4 1	- 4 4 1	541	142	-142	342	-342	5 4 2	2 4 51	243	-143	
	24	32	16	24	29	25	16	Ę	4 8	16	23	39	õ	16	17	17	81	28	1	13	11	32	16	16	24	101	101	4 8	53	\$	96	6 ‡	11	24	25	71	72	36	37
_ °	2	27	17	24	36	8	22	51	49	25	26	35	28	22	18	17	22	24	1	15	12	32	32	ő	22	96	92	52	õ	\$	5	46	ŝ	35	22	63	2	39	5
4 1	522	-5 2 2	722	123	-123	323	-323	423	-423	523	124	-124	324	4 2 6-	4 2 4	-4 2 4	524	-5 2 4	-125	325	-325	425	-4 2 5	126	-126	230	-230	630	131	-131	331	-3 3 1	531	-531	731	232	-2 3 2	632	-632
▶0	1 7	13	12	5	Ş		25	16	1	Ê	3	Ş	Ģ	46	\$	32	32	20	63	41	1	23	ę	17	24	35	26	16	45	ł	19	22	12	36	47	35	8	16	R
. °	-	17	18	53	52	12	25	31	91	16	ą	;	Ş	\$	ł	26	28	23	51	ę	68	21	47	20	25	õ	23	18	47	46	24	22	13	36	ę	34	2	1	ħ
4 1	614	115	-115	215	-215	315	116	-116	216	-216	-120	320	-320	420	-4 2 0	520	-5 2 0	720	021	022	023	024	025	026	121	-121	321	-321	421	-4 2 1	5 2 1	-5 2 1	721	122	-122	322	-3 2 2	4 2 2	1 2 2
°.	35	65	63	33	33	20	17	34	CE	16	45	ŧ	9 8	6\$	38	5	26	27	22	23	18	23	25	25		53	24	22	16	57	36	12	56	22	22	22	23	38	23
	Ē	61	58	53	õ	8	1	37	36	19	t 2	ŧ	8	46	37	42	32	31	25	26	18	21	23	53	14	72	23	15	12	9	38	10	37	38	28	22	27	5	23
1 4 4	111-	211	-211	116	-311	511	-511	611	-611	111	112	-112	212	-212	312	-312	512	-512	612	-612	712	-712	113	-113	213	-213	313	-313	513	613	-613	713	114	-114	214	-214	314	4 1 6-	514
•	101	103	37	115	49	32	74	83	59	47	47	49	26	55	57	48	41	37	25	71	73	36	36	36	28	24	22	18	66	74	74	52	52	36	96	8	8	24	5
⊳ °	107	ğ	ž	66	5	66	69	65	59	94	52	46	26	5	51	69	3	76	23	77	14	15	41	2	31	2	38	18	57	71	69	\$	6	96	6 E	1	7	5	11
1 4 1	001	-400	009	002	• 0 0	900	101	101-	101	105-	105	105-	101	103	E 0 1-	303	-103	503	703	4 0 2	102	404	101-	105	-105	305	-305	505	-110	210	-210	310	-110	015	-510	610	-610	110	

E. Plattner u. a.:

kondition des Normalgleichungssystems entscheidend verschlechtert, zu suchen sein. Die Parameter der Li-Lagen wurden daher aus einer dreidimensionalen Differenz-Fourier-Synthese der Form $(F_0 - F_{c[ZnGeO_i]})$ berechnet. Drei Verfeinerungszyklen, in denen die Li-Atome zwar eingesetzt, aber nicht verfeinert wurden, ergaben einen *R*-Wert von 5,7%. Ohne Einbeziehung der Li-Atome in die Strukturfaktorrechnung verschlechtert sich der *R*-Wert auf 7,9%. In Tab. 2 sind die gefundenen Atomparameter und Temperaturkoeffizienten angegeben. Tab. 3 gibt einen Vergleich zwischen beobachteten und berechneten Strukturamplituden wieder.

Abb. 1. Kristallstruktur von Li $_2$ ZnGeO₄, projiziert auf die (xy)-Ebene, mit eingezeichneten Ge—O-Bindungen

Diskussion der Kristallstruktur

Wie aus Abb. 1 hervorgeht, enthält die Kristallstruktur der Verbindung Li₂ZnGeO₄ isolierte [GeO₄]-Tetraeder und gehört damit zur Gruppe der Inselgermanate. Die [GeO₄]-Tetraeder sind über Ecken mit [LiO₄]- und [ZnO₄]-Koordinationspolyedern verknüpft und stimmen in der Anordnung mit der Lage der [PO₄]-Tetraeder in der Tieftemperaturform des Lithium-orthophosphats, Li₃PO₄⁶, überein.

Li₂ZnGeO₄ und Li₃PO₄ (t) besitzen eine hexagonal dichteste Kugelpackung von Sauerstoffatomen, in der die Atome Li, Zn, Ge bzw. Li, P die Hälfte der Tetraederlücken besetzen. Die monokline Symmetrie von Li₂ZnGeO₄ kann durch geordnete Besetzung der Li-Atomlagen in Li₃PO₄ (t) mit Li- und Zn-Atomen abgeleitet werden. Li₂ZnGeO₄ ist mit dem Mineral Liberit, Li₂BeSiO₄⁸, isotyp.

Wie auf Guinier-Lenné-Hochtemperaturaufnahmen beobachtet

werden konnte, wandelt sich die monokline Tieftemperaturmodifikation von Li₂ZnGeO₄ bei 680 °C in eine orthorhombische Hochtemperaturform (bei 840 °C: Pmn2₁, a = 6,49, b = 5,52 und c = 5,11 Å) um. Dieser Phasenübergang ist mit einer statistischen Verteilung der Li- und Zn-Atome auf der Position 4 (b) der Li-Atome von Li₃PO₄ (t) verbunden. Die Hochtemperaturform von Li₂ZnGeO₄ dürfte

Ge-O (1)	$1,73\pm0,05$		O (1)—Ge—O (2)	$110,8 \pm 1,9$
Ge-O(2)	1,81 + 0.03		O (1)-Ge-O (3)	$105,5 \pm 2,6$
Ge-O(3)	1,74 + 0,05		O(1) - Ge - O(4)	$111,7 \pm 2,0$
Ge - O(4)	1.80 + 0.03		O(2)—Ge— $O(3)$	107,3 + 2,1
	/ /		O(2) - Ge - O(4)	112.5 + 1.5
Mittelwert	1,77		O(3)—Ge— $O(4)$	108,7 \pm 2,1
$7_{\rm p} = 0.(1)$	1.93		$O_{1}(1) - Z_{2} - O_{2}(2)$	117.2 ± 1.7
$Z_{m} = O(1)$	$1,33 \pm 0,03$		O(1) = Zn = O(2)	109.4 ± 21
Zn = O(2)	$1,80 \pm 0.05$		O(1) - 2n - O(3)	$105, 4 \pm 2, 1$
Zn = O(3)	$1,98 \pm 0.00$		O(1) - Zn - O(4)	$101,0 \pm 1,0$
Zn-O(4)	$1,95 \pm 0,03$		O(2) - Zn - O(3)	$100,7 \pm 1,0$
A.F	4.00		O(2) - Zn - O(4)	$111,0 \pm 1,3$
Mittelwert	1,93		O(3) - Zn - O(4)	$108,0 \pm 1,8$
Li (1)—O (1)	2,13		O (1)Li (1)-O (2)	109,6
Li (1)—O (2)	2,10	100 A.S.	O (1)-Li (1)-O (3)	114,0
Li (1) - O (3)	1,92		O (1)—Li (1)—O (4)	103,3
Li $(1) - O(4)$	2,05		O (2)—Li (1)—O (3)	113,7
	·		O(2)—Li(1)—O(4)	109,5
$\mathbf{Mittelwert}$	2,05		O(3)—Li(1)—O(4)	106,0
$L_{1}(2)=0(1)$	1 97		O(1)—Li(2)— $O(2)$	105.5
Li(2) = O(1) Li(2) = O(2)	1 95		O(1) - Li(2) - O(3)	115.5
Li(2) = O(2) Li(2) = O(3)	1,00		O(1) - Li(2) - O(4)	113.0
$L_1(2) = 0(3)$	2.08		O(2) $Ii (2) O(3)$	112 4
DI(2) = 0(4)	2,00		$O(2) - I_i(2) - O(3)$	104 6
Mittalment	1.07		O(2) - Ii(2) - O(4)	105.4
Mittelwert	1,97		O(3) - II(2) - O(4)	100,±

Tabelle 4. Interatomare Abstände und Winkel (in Å bzw. Grad) für ${
m Li}_2{
m ZnGeO}_4$

mit der von West und Glasser⁷ beschriebenen, orthorhombischen β^{II} -Modifikation von Li₂ZnSiO₄ (bei 700 °C: Pmn2₁, a = 6,42, b = 5,40und c = 5,04 Å) isotyp sein.

Die berechneten interatomaren Bindungslängen und Bindungswinkel sind in Tab. 4 angegeben. Der Mittelwert der Ge—O-Abstände beträgt 1,77 Å und stimmt mit dem in $\text{Li}_4\text{GeO}_4^1$ gefundenen Wert (1,77 Å) sehr gut überein, liegt jedoch wie dieser etwas über dem allgemeinen Mittelwert aus 10 Strukturen (1,746 Å), der vor allem Werte aus vernetzten Tetraedergruppierungen enthält. Die Li-Atome besetzen zwei 2zählige Punktlagen mit angenähert tetraedrischer Sauerstoffumgebung und mittleren Li—O-Abständen von 1,97 bzw. 2,05 Å. Der mittlere Zn—O-Abstand für die tetraedrische Koordination entspricht mit 1,93 Å dem Mittelwert von 1,92 Å in Zn₂SiO₄⁹.

Die Rechenarbeiten wurden am EDV-Zentrum der Technischen Universität Wien durchgeführt, wofür wir bestens danken.

Der Oesterreichischen Nationalbank und der Hochschuljubiläumsstiftung der Stadt Wien sind wir für die finanzielle Unterstützung bei der Anschaffung wissenschaftlicher Geräte zu Dank verpflichtet.

Literatur

- ¹ H. Völlenkle und A. Wittmann, Z. Kristallogr. 128, 66 (1969).
- ² W. Schütz, Z. physik. Chem. **31 B**, 292 (1936).
- ³ E. Plattner, Diplomarbeit, Technische Hochschule Wien, 1971.
- ⁴ E. Plattner, Dissertation, Technische Hochschule Wien, 1974.
- ⁵ J. Zemann, Acta cryst. [Kopenhagen] 13, 863 (1960).
- ⁶ Ch. Keffer, A. Mighell, F. Mauer, H. Swanson und S. Block, Inorg. Chem. 6, 119 (1967).
- ⁷ A. R. West und F. P. Glasser, J. Mater. Sci. 5, 557 (1970).
- ⁸ Chang, Han-Ching, Acta geol. sinica 46, 76 (1966); Chem. Abstr. 65, 11457 h (1976).
- ⁹ W. H. Zachariasen und W. L. Bragg, Z. Kristallogr. 72, 518 (1930).

Korrespondenz und Sonderdrucke:

Dr. E. Plattner Institut für Mineralogie, Kristallographie und Strukturchemie Technische Universität Wien Getreidemarkt 9 A-1060 Wien Österreich